Geographic Delineation of Disease Clusters through Multi-Objective Optimization
نویسندگان
چکیده
Irregularly shaped spatial disease clusters occur commonly in epidemiological studies, but their geographic delineation is poorly defined. Most current spatial scan software usually displays only one of the many possible cluster solutions with different shapes, from the most compact round cluster to the most irregularly shaped one, corresponding to varying degrees of penalization parameters imposed to the freedom of shape. Even when a fairly complete set of solutions is available, the choice of the most appropriate parameter setting is left to the practitioner, whose decision is often subjective. We propose quantitative criteria for choosing the best cluster solution, through multi-objective optimization, by finding the Pareto-set in the solution space. Two competing objectives are involved in the search: regularity of shape, and scan statistic value. Instead of running sequentially a cluster finding algorithm with varying degrees of penalization, the complete set of solutions is found in parallel, employing a genetic algorithm. The cluster significance concept is extended for this set in a natural and unbiased way, being employed as a decision criterion for choosing the optimal solution. The Gumbel distribution is used to approximate the empiric scan statistic distribution, speeding up the significance estimation. The method is fast, with good power of detection. An application to breast cancer clusters is discussed.
منابع مشابه
What is the true shape of a disease cluster? The multi-objective genetic scan
OBJECTIVE We propose a novel approach to the delineation of irregularly shaped disease clusters, treating it as a multi-objective optimization problem. We present a new insight into the geographic meaning of the cluster solution set, providing a quantitative approach to the problem of selecting the most appropriate solution among the many possible ones. BACKGROUND Irregularly shaped spatial dis...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006